Pd6O4+: an oxidation resistant yet highly catalytically active nano-oxide cluster.
نویسندگان
چکیده
The palladium oxide cluster Pd(6)O(4)(+) is formed as the sole product upon reaction of a bare palladium cluster Pd(6)(+) with molecular oxygen in an octopole ion trap under multicollision conditions. This oxide cluster is found to be resistant to further oxidation over a large temperature range, and further O(2) molecules merely physisorb on it at cryogenic temperatures. The particular stability of Pd(6)O(4)(+) is confirmed by the observation that the reaction of Pd(7)(+) with O(2) leads to fragmentation resulting in the formation of Pd(6)O(4)(+). However, in an oxygen-rich O(2)/CO mixture, Pd(6)O(4)(+) is identified as the catalytically active species that effectively facilitates the low-temperature oxidation of CO. Gas-phase reaction kinetics measurements in conjunction with first-principles calculations provide detailed molecular level insight into the nano-oxide cluster chemistry and are able to reveal the full catalytic combustion reaction cycle.
منابع مشابه
An efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine
In this study, Zinc oxide nanoparticles were synthesized by gel-combustion method using a novel bio-fuel tapioca starch pearls, derived from the tubers of Mannihot esculenta, to investigate the photocatalytic degradation of ccaffeine. The ZnO photocatalyst was characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible spectroscopy. X-ray diffractometry result f...
متن کاملDirect Single-Enzyme Biomineralization of Catalytically Active Ceria and Ceria-Zirconia Nanocrystals.
Biomineralization is an intriguing approach to the synthesis of functional inorganic materials for energy applications whereby biological systems are engineered to mineralize inorganic materials and control their structure over multiple length scales under mild reaction conditions. Herein we demonstrate a single-enzyme-mediated biomineralization route to synthesize crystalline, catalytically ac...
متن کاملCatalytically active gold: The role of cluster morphology
Recent studies of the CO oxidation activity exhibited by highly dispersed nano-gold (Au) catalysts have reached the following conclusions: (a) bilayer structures of Au are critical; (b) a strong interaction between Au and the support leads to wetting and electronrich Au; (c) oxidative environments deactivate Au catalyst by re-oxidizing the support, which causes the Au to de-wet and sinter. Rece...
متن کاملSynthesis and Investigation the Catalytic Behavior of Cr2O3 Nanoparticles
The use of an inorganic phase in water-in-oil (w/o) microemulsion has recently received considerable attention for preparing metal oxide nanoparticles. This is a technique, which allows preparation of ultrafine metal oxide nanoparticles within the size range 40 to 80 nm. Preparation of nano chromium (III) oxide studied investigated in the inverse microemulsion system. Therefore the nucleation o...
متن کاملAu nano dendrites/composition optimized Nd-dopped cobalt oxide as an efficient electrocatalyst for ethanol oxidation
In this study, Nd-doped cobalt oxide (Nd-Co3O4) nanoparticles were prepared by a combustion synthesis procedure using Co(acac)3 complex. The nanoparticles were characterized by infrared spectroscopy (IR), X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). Then, the effect of Nd-Co3O4 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 134 51 شماره
صفحات -
تاریخ انتشار 2012